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Abstract 
 

This paper presents a method for neural network genre classification of song 
lyrics using natural language processing techniques. This task appears to be 
difficult for humans relative to their ability to classify genre based on audio 
information. Techniques and considerations for data collection are presented 
along with a survey of strategies for drawing syntactic and semantic features from 
text. Results demonstrate that accuracies well above 80% can be achieved using 
these techniques, and that utilizing both syntax and semantics in chorus produces 
the most robust outcomes.  

 

Introduction 
 
The diversity of American popular music can be most readily identified by the 
palettes of sound used by artists of different styles to craft their songs. Music is not 
just instrumentation, however. The content of a song is defined by its lyrical 
content. This paper focuses its analysis on this latter component of songwriting, 
and seeks to determine whether a computational agent can correctly identify the 
genre of a song from its lyrics. 

It is not quite obvious that the lyrics of a song should be identifiably 
correlated with its genre. Song subjects are not unique to genres (love songs are 
common in both slow ballads and pop songs), and all (English) songs use the same 
a common dictionary of words. However, the authors expect that the syntactic and 
semantic differences between genres are robust enough to produce a relatively 
accurate prediction. The task is also made more difficult by the fact that musical 
genre is inherently subjective, and the boundaries between categories are not 
well-defined. Songs may easily be described as two genres simultaneously, or a 
combination of them. Though this problem cannot be directly solved, we attempt 
to mitigate the effect of disagreement over classification by collecting all genre 
information from the same source. 

Neural networks were selected as the artificial agent due to their ability to 
process abstract feature representations and their historically good performance in 
classification tasks. Such networks require large sets of data and relatively capable 
hardware to train the network to convergence. 



This paper reviews methods from previous work on similar tasks, discusses 
considerations for the construction of the dataset, estimates human accuracy for 
the genre categorization task, and assesses the applicability and performance of 
different network structures. The resulting agent achieves an accuracy which is 
appreciably greater than random chance and human performance. We suggest that 
the success of the network at the prediction task is driven in part by the union of 
syntactic and semantic strategies for feature extraction. 
 

Related Work 
 
Most previous research into musical genre classification has applied the task to 
audio information. Tzanetakis et. al. developed a features from an audio signal to 
capture the rhythm and “surface” (incorporating timbre and texture) of the musical 
information for prediction (Tzanetakis 2001). Existing frameworks for audio 
processing including Marsyas (Music Analysis, Retrieval, and Synthesis for Audio 
Signals) can be utilized for more sophisticated processing of audio files (Haggblade, 
n.d.). Musical information can made more explicit by using attributes of the notes 
themselves (Mellon, 2014). Humans are impressively good at identifying the 
musical genre from audio information. A previous study showed 70% 
self-agreement among participants when played just three seconds of audio, and 
they performed better-than-chance when given just a 250ms clip (Gjerdingen, 
2010). Artificial agents have yet to categorically outperform humans in this task. 
Below, we find suggestive evidence that genre classification from lyrical 
information is a much harder problem for humans. 

Though the objective of lyric classification is similar to audio classification, 
the problem of lyric analysis more properly falls into the discipline of natural 
language processing (NLP). Nadkarni et. al. provide an introduction to the history 
of NLP. Music lyrics are a special application of NLP, and the structure of lyrics 
complicates traditional NLP concepts and tools, such as sentence-level 
grammatical analysis. Mahedero et. al. survey previous work into NLP techniques 
for lyrics, and suggest strategies to capture the structure and repetition of the 
source. The task of genre classification has not been directly investigated by 
previous research, but Laurier et al. note success in classifying the mood of the 
piece using TF -IDF weighting to process lyric representation, an approach which 
is adapted in this paper (Laurier 2008). 
 

Auxiliary Data 
 
Since the artificial agent was expected to act intelligently in its genre classification 
of lyrics, data was collected to estimate the accuracy of humans when put to the 
same task. A survey was distributed to friends and family of the authors via Google 
Forms. Twelve songs were selected randomly from the songs dataset, using a 



clustered design to ensure each of six genres appear exactly twice. The full lyrics to 
each song was given and participants were asked to guess which genre the song was 
classified as. Because no rigorous analysis would be performed on the results, the 
survey design sacrificed robustness in favor of simplicity for the benefit of the 
participants. Only six genres were used, and participants were asked to classify 
each song as only one genre, despite the fact that songs in the dataset usually had 
more than one classification. The mean score on the 12 point test was 4.76 songs 
correct, with a standard deviation of 1.71. The maximum score was 9, and the 
minimum score was 1. A more statistically principled survey would enable the 
results of this paper to be compared humans by measuring the number of 
standard deviations from the survey mean. However, the authors feel that the 
design quality of the survey and the sample size were not sufficient to warrant 
direct inference from its results. The survey was created only for a suggestive 
estimate. 
 

 
Figure 1 Histogram of scores in the 12-point quiz estimating humans’ accuracy in 
identifying genre from lyrics. Key statistics are noted above the graph. As is 
discussed in the Results section, the highest-performing network in this study 
achieved an accuracy of 87%, implying a score of 10.3 on this scale. 
 
 

 
   



Methods 
 

Data collection 
 
Songs were sourced from tracklists from albums sourced from a list of one 
thousand of the best albums of all time according to RockListMusic.com. 
Significant experimentation was required to identify an appropriate data source 
for song lists, genres, and lyrics. The RockListMusic.com dataset was chosen 
because of a Goldilocks-style decision calculus after exploration of several sources 
of data.  
 

Quantity 
 
A large bank of data is required to train a neural network to convergence without 
introducing problems of overfitting. The best and largest compilations of music 
easily accessible on the internet are “best of all time” lists. More songs can be added 
by accumulating the tracklists of albums than from rankings of specific songs (the 
ratio of payoff is about ten songs per album). The larger number of songs 
indirectly referenced by album lists is critical for the proper training of the neural 
net, particularly given the attrition rate of songs in their processing by web APIs 
(below). For this reason, our search was narrowed to lists of the best albums of all 
time. The most famous of such lists, Rolling Stone’s 500 best albums of all time, 
resulted in a relatively small number of usable songs, so RockListMusic.com’s list 
of 1000 albums was preferred. 
 

Distribution 
 
Since the result of neural network training is dependent on the distribution of the 
training data, care should be taken to ensure wayward distributions do not 
introduce bias into the network’s predictive capacity. Since our network is 
intended for practical use in song categorization, our data should reflect the 
real-world of distribution of songs it might be used to predict. Unfortunately, most 
“best of all time” lists include a disproportionate amount of rock songs. The data 
from the RockListMusic.com list was slightly more evenly distributed than Rolling 
Stone’s 500 best albums of all time, so it was again preferred. However, the data 
still exhibited considerable bias towards rock. To compensate, an ex-post 
algorithm was used to construct a final dataset based on a random clustered sample 
of the resultant songs from the RockListMusic.com’s list. Such a strategy 
guarantees a satisfying distribution, but reduces the maximum size of the dataset 
because many rock songs go unused.  
 



 
Figure 2 Bar chart of the frequency of each genre. Blue bars represent the data 
before clustered sampling, and orange bars represent the results of such sampling. 
The adjusted data is not totally uniform because each song can have more than 
one genre. This means if a relatively rare genre is sampled, chances are that 
another, more popular genre also coexists in the information for that song. This 
method of compensating for genre skewness was devised after collecting our initial 
results which are included here. The authors suggest additional investigation into 
the success of networks trained using the above nine genres using clustered 
sampling. 
 

Content 
 
Our research question implies each song should contain lyrics, and the feature set 
used in our network requires each song be in English. Other common audio file 
types, such as podcasts or audiobooks, are similarly disqualified. Though Columbia 
University’s Million Song dataset was large and relatively relatively evenly 
distributed across genres, the inclusion of foreign-language songs and non-musical 
entries (poems, plays, etc) rendered it unusable. 
 
Once the set of songs was identified, lyrics and genre information was sourced. 
This was accomplished using the Genius and Spotify Web APIs, respectively. Song 
information was passed to each API over the Internet, and the appropriate 
information was retrieved from the response. Using two APIs required that all 
songs exist in both databases. Absence of information from either of these sources 
was the primary source of attrition as the data was prepared for feature extraction. 
 
 
   



Genius 
 
Lyrics were sourced from the Genius API, which maintained by Genius, a popular 
music lyrics aggregation site. Since the metadata available directly through the API 
does not include the lyrics, a combination approach was used. Song information 
was passed to the API to find the URL for the song’s lyrics page, then a 
web-scraping algorithm extracted the lyrics from the page’s HTML source. 
 

Spotify 
 
Genres were drawn from the Spotify API using the Spotipy python package 
interface. Because Spotify classifies artists by genre but not individual songs or 
albums, each song was assigned the genres of the artist that wrote it. This requires 
the assumption that the genres of a song matches the genres of its primary artist . 1

Spotify uses thousands of genres for classification, and each artist can be 
tagged with multiple genres. For categorization purposes, a list of genres was 
adapted from the “parent” genres in an online catalog of music genealogy, in order 
to capture all relevant sub-genres within the umbrella of our chosen genres. The 
final genre list consists of blues, country, electronic, pop, jazz, reggae, rock, r&b, 
and rap. Though ideally each genre should be mutually exclusive of the others, 
large amounts of overlap exist between the categories in the artists’ lists of genres, 
meaning it is unrealistic to enforce a one genre limit on songs. As a result, songs 
have multiple genres, leading to the use of a normalized vector for genre encoding 
(below). 
 

Features 

Data representations were chosen in order to extract key syntactic structure as well 
as semantic tone. Two main groups of features were selected: word frequency and 
part of speech (POS) N-grams. These features were then modified by applying 
term frequency-inverse document frequency (TF-IDF) vector representation to 
both of them. 

TF -IDF (shown below)  is a weighting system for text analysis that weighs 
terms by their relative frequencies in the sample corpus, weighting rare terms 
higher than common ones. Capturing rarity in addition to syntactic occurrence 
was critical because unique words were fairly few and far between, due to shared 
topics in genres and repetition within songs 

1  This assumption can be avoided by altering the research question to be “Can a 
neural network agent predict from the lyrics of a song the primary genres of the 
artist that wrote it?” For example, for a given song, a question might be asked of the 
network, “Was this written by a rock artist?” 



 

 

 
Figure 3 The formula for computing term frequency - inverse document 
frequency for a word in a corpus calculated by dividing a term's frequency in the 
document by the frequency of the word that is most frequent in the document, to 
regularize for document size, then multiplying that ratio by a logarithmic 
transformation of the number of documents divided by the number of documents 
in the corpus that contained the term. 

 
Grammatical structure was captured by N-grams of POS, which are all 

possible permutations of POS for each number less than or equal to N. For 
example, for a corpus where only articles and nouns were used, the POS 2-gram 
set of this corpus would be [A, N, AN, NA]. This tensor was than feed through the 
same TF -IDF weighting function to detract weighting from extremely common 
syntactic combinations, such as article - noun etc. 

Both of these features have their strengths and weaknesses. Word count 
identifies which terms are more frequent in each document, thereby granting 
some semantic interpretation, one downside is that our models, when using this 
feature vector, will only be equipped to handle words it has seen before. By 
structuring feature vectors with a one to one relation between indices and unique 
words in the corpus, if our models come across new words they will have no space 
in the feature array for them and will need to drop them, losing some useful data. 
Furthermore, word count cannot account for metaphor or double entendre there 
for our models  may be be easily confused when artists use these literary devices. 
POS N-grams, though they do give us an idea of the POS combinations used in 
each song, capture only a small representation of grammar, syntax in general is 
much more complicated than this simplistic representation. 

Though these are both fairly basic language processing techniques, they 
capture the essence of the relevant features we identified and yield powerful 
results when combined. 
 
Models 
 

Neural networks are useful in the interpretation of meaningful features due 
to their structure, which constructs linear decision boundaries layer by layer. Our 
neural networks were built in with the tflearn library, which builds upon 
tensorFlow, optimizing the development time to implement the network structure. 
Each network was  3 layers deep and scaled depending on the size of there input 



layer. The layer ratios were as follows: 1.0 for the input layer, .75 for the first 
internal layer, .5, and .25. The last layer of each network used a softmax activation 
function for multiclass classification and resulted in a probability distribution over 
each of our genres. Most of the model parameters were typical of most 
implementations, leaving most innovation for in exploration of different 
combinations of features and model structures.  
Some other parameters that remained constant throughout all of our models were: 

The activation function - Each node in our networks used a linear activation 
function, which essentially fitted the sum of the incoming weighted 
input to the identity function leaving it unchanged. 

The optimization algorithm - We used ADAM as an optimization standard 
in our models, ADAM (Adaptive Moment Estimation), has become an 
industry standard and is included in the tflearn presets, this algorithm 
keeps track of different learning rates for each parameter in the 
network and adapts them separately as learning progresses, leading to 
much more efficient and accurate results compared to its 
predecessors (Kingama et al. 2015) 

The loss function - Categorical cross entropy was used as our loss function. 
As mentioned in class, this function calculates the entropy from a 
predicted softmax classification to the actual label of each example. 
This function was minimized with ADAM. 

Some model attributes were modified across implementations. Our most standard 
model is a 3 layer feed forward, fully connected neural network, which had three 
internal layers along with input and softmax output layers, outlined above. 

An adaptation to this model was the introduction of a pooling layer. The 
rationale for this step was to use pooling as a way of condensing more focused 
information from our rather large sparse feature representation. In the same vein, 
the last adaption we made to this initial feed-forward model was the use of two 
autoencoders to tease out concise representations of our original feature sets. 

The last model was an adaption of a convolutional neural network for 
language classification modeled after the experiments of (Kim, 2014). Our 
hypothesis for this model was that it could work with POS N-grams as they were 
our only feature with an appreciable structure. This hypothesis turn out to be 
incorrect and is discussed below. 

Each model had specialized training based on how long it took each to 
converge, though all of our models did reach convergence in 200 epochs or less 
due to their simple structure. Tflearn uses a training algorithm that selects the last 
10% of the provided training samples as a validation set for training, which means 
that one epoch required ten training cycles through our data. 
 
Results 
 
The results of our experiments appear to confirm that feature representations of 
both syntax and semantics outperform either feature representation alone. Below 
is a table with the accuracies of each model against the features used. 



 

 
Figure 4 Results table detailing the accuracy of each network structure based on 
the features used as input. Highest accuracy was achieved by the feed-forward with 
pooling network trained with both POS N-grams and TF-IDF frequency vectors. 

 
The feed-forward neural network with pooling outperformed every other 

model with every set of feature vectors, implying that the pooling layers had some 
effect on accuracy relative to the model without pooling. This makes sense given 
the large amount of whitespace in our initial sparse vectors. Most of the entries in 
input vector added no positive value in the next layer, so it appears that pooling 
out only the highest values emphasized their effect on the next layers. Within this 
model TF - IDF representation of word count and POS N-gram combinations was 
the most successful feature, providing an accuracy of 87% on average and was often 
well above 90%. 

The auto encoder was less successful than other models. It is not 
immediately apparent why this is the case. Some of our poor results with this 
model may be explained by the dimensions chosen. Our strategy of choosing 
model dimensions that seemed sensible, without hand picking integer sizes for 
each layer, may have found its limits with this model. This may have resulted in 
too much or too little compression in our data to elicit positive results. In future 
testing, we recommend trying some of many pruning methods for deep neural 
networks that systematically single out the least utilized nodes in each layer for 
removal. 

Through our convolutional model performed well above chance, we still 
have reason to believe that our initial hypothesis that POS N-grams were 
structured enough to take advantage of the network window was incorrect. This 
may have been because of the window sizes. Since we are not dealing with an 



actual image, teasing out windows sizes that were effective while remaining 
efficient proved to be a challenge and we generally saw an increase in accuracy as 
the windows were enlarged, though not much. 

The reason for CNNs’ phenomenal performance with pictures is because 
adjacent pixels in images have much to do with each other, and this was not the 
case in our data representations. It turned out that even the permutation relation 
between indices in our feature vectors was not enough to elicit a classification that 
was more accurate than our other models. 

Moving forward with CNN’s, our focus will remain on better data 
representation that can take full advantage of the network architecture. One way to 
tackle this issue would be to use word similarity to arrange our feature vector. This 
would mean choosing a starting word and then progressively building the vector 
by appending the word in our dictionary that has yet to be chosen and is most 
similar to the preceding word doing this iteratively until all of the words in our 
dictionary acuppy a unique space in our vector could result in a representation 
structured enough to take advantage of a CNN’s sliding window. 
 

Conclusion 
 

We demonstrate that in the case of classifying genre from a language 
processing standpoint features representation of syntax and semantics work better 
when combined then they do alone. This may not come as a surprise to some 
given our data but there can still be a tendency of researchers to rely too heavily 
on semantics or on syntax alone, or to throw data that hasn't been conscientiously 
represented at models relying too much on neurals neworks ability to tease out 
features on their own. By remaining too simplistic but still relevant models and 
focusing on data representations that were innovative and took into account a 
range of approaches to natural language (syntax and semantics) we showed a little 
feature engineering can go a very long way. 
 

References 
Gjerdingen, R., Perrott, D., “Scanning the Dial: The Rapid Recognition of Music 

Genres.” Journal of New Research, 2008. 
http://faculty-web.at.northwestern.edu/music/gjerdingen/Papers/PubPapers
/Scanning.pdf 

Haggblade, M., Hong, Y., Kao, K., “Music Genre Classification,” 
n.d.http://cs229.stanford.edu/proj2011/HaggbladeHongKao-MusicGenreClas
sification.pdf 

Laurier, C., Grivolls, Grivolla, J., Herrerra, P., “Multimodal Music Mood 
Classification using Audio and Lyrics” Seventh International Conference on 
Machine Learning and Applications, 2008. 
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4725050 

Mahedero, J., Martinez, A., Cano, P., Koppenberger, M., Gouyon, F., “Natural 
language processing of lyrcs” Proceedings of the 13th annual ACM international 
conference on Multimedia, 2005. https://dl.acm.org/citation.cfm?id=1101255 



Mellon, R., Spaeth, D., Theis, E., “Genre Classification Using Graph 
Representations of Music”, 2014. 
http://cs229.stanford.edu/proj2014/Rachel%20Mellon,%20Dan%20Spaeth,%2
0Eric%20Theis,%20Genre%20Classification%20Using%20Graph%20Represen
tations%20of%20Music.pdf 

Nadkarni, P., Ohno-Machado, L., Chapman, W., “Natural language processing: an 
introduction.” Journal of the American Medical Informatics Association, Volume 
18, Issue 5, 2011 https://doi.org/10.1136/amiajnl-2011-000464 

Tzanetakis, G., Essl, G., Cook, P., “Automatic Musical Genre Classification Of Audio 
Signals.”  IEEE Transactions on Speech and Audio Processing, Vol. 10, Iss. 5, 
2002. http://ieeexplore.ieee.org/document/1021072/ 

Kingma, D., Lei Ba, J., “ADAM: A Method for Stochastic Optimization” 3rd 
International Conference on Learning Representations 
https://arxiv.org/pdf/1412.6980.pdf 

Kim, Y., “Convolutional Neural Networks for Sentence Classification”, Proceedings 
of the 2014 Conference on Empirical Methods in Natural Language 
Processing (EMNLP), pages 1746–1751, 
http://www.aclweb.org/anthology/D14-1181 

 

Packages 
 
François C., “Keras”, GitHub, 2016. 
Damien, A., et al. “TFLearn”, GitHub, 2016. https://github.com/tflearn/tflearn 
“Genius API.” Genius. https://docs.genius.com/ 
Lamere, P. “Spotipy”, GitHub. https://github.com/plamere/spotipy 
Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 

2825-2830, 2011. 
Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux. The NumPy Array: A 

Structure for Efficient Numerical Computation, Computing in Science & 
Engineering, 13, 22-30 (2011), DOI:10.1109/MCSE.2011.37 

Tensorflow, Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng 
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu 
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, 
Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath 
Kudlur, Josh Levenberg, Dan Mané, Mike Schuster, Rajat Monga, Sherry 
Moore, Derek Murray, Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya 
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, 
Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin 
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine 
learning on heterogeneous systems, 2015. Software available from 
tensorflow.org. 

Bird, Steven, Edward Loper and Ewan Klein (2009), Natural Language Processing  

https://arxiv.org/pdf/1412.6980.pdf
http://www.aclweb.org/anthology/D14-1181


with Python. O’Reilly Media Inc. 
 


